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Abstract

Most existing person re-identification (re-id) methods re-

quire supervised model learning from a separate large set

of pairwise labelled training data for every single camera

pair. This significantly limits their scalability and usabil-

ity in real-world large scale deployments with the need for

performing re-id across many camera views. To address

this scalability problem, we develop a novel deep learn-

ing method for transferring the labelled information of an

existing dataset to a new unseen (unlabelled) target do-

main for person re-id without any supervised learning in

the target domain. Specifically, we introduce an Transfer-

able Joint Attribute-Identity Deep Learning (TJ-AIDL) for

simultaneously learning an attribute-semantic and identity-

discriminative feature representation space transferrable to

any new (unseen) target domain for re-id tasks without the

need for collecting new labelled training data from the tar-

get domain (i.e. unsupervised learning in the target do-

main). Extensive comparative evaluations validate the su-

periority of this new TJ-AIDL model for unsupervised per-

son re-id over a wide range of state-of-the-art methods

on four challenging benchmarks including VIPeR, PRID,

Market-1501, and DukeMTMC-ReID.

1. Introduction

Person re-identification (re-id) aims at matching people

across non-overlapping camera views distributed at distinct

locations. Most existing re-id studies follow the supervised

learning paradigm such as optimising pairwise matching

distance metrics [23, 58, 63, 55, 60, 52, 56, 8] or deep learn-

ing methods [29, 50, 57, 48, 6, 30, 31, 5]. They assume the

availability of a large number of manually labelled match-

ing pairs for each pair of camera views for learning a feature

representation or a matching distance function optimised

for that camera pair. However, this leads to a poor scalabil-

ity in practical re-id deployments, because such scale man-

ual labelling is not only prohibitively expensive to collect

in the real-world as there are a quadratic number of camera

pairs, but also implausible in many cases, e.g. there may not

exist sufficient training people reappearing in every pair of

camera views. This scalability limitation severely reduces

the usability of existing supervised re-id methods.

One generic solution to large scale re-id in real-world

deployment is designing unsupervised models. While a few

unsupervised methods have been developed [13, 9, 21, 20,

34, 51, 61], they typically offer weaker re-id performances

when compared to the supervised counterparts. This makes

them less useful in practice. One main reason is that with-

out labelled data across views, unsupervised methods lack

the necessary knowledge on how visual appearance of iden-

tical objects changes cross-views due to different view an-

gles, background and illumination. Another solution is to

exploit simultaneously (1) unlabelled data from a target do-

main and (2) existing labelled datasets from some training

source domains. Specifically, the idea is to learn a feature

representation that contains some view-invariant informa-

tion about people appearance learned from labelled source

data, transfer and adapt it to a target domain by using only

unlabelled target data for re-id matching in the target do-

main. As the target dataset has no label, this is regarded as

an unsupervised learning problem.

There are a few studies on exploiting unlabelled target

data for unsupervised re-id modelling using either identity

or attribute label, or both from source datasets [40, 59, 47].

However, they generally offer weaker re-id performance

due to either domain sensitive hand-crafted features or a

lack of an effective knowledge transfer learning algorithm

between attribute and identity discriminative features. It is

very challenging to address this cross-domain and multi-

task (between attribute and identity) transfer learning prob-

lem in a principled way due to three co-occurring uncertain-

ties: (1) Source and target domains have unknown camera

viewing conditions; (2) The identity/class population be-

tween source and target domains are non-overlapping there-

fore presents a more challenging open-set recognition prob-

lem, as compared to the closed-set assumption made by

most existing transfer learning models [39]; (3) Joint ex-
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ploitation of attribute and identity labels suffers from the

heteroscedasticity (a mixture of different knowledge granu-

larity and characteristics) learning problem [11].

In this work, we consider unsupervised person re-id by

sharing the source domain knowledge through attributes

learned from labelled source data and transfering such

knowledge to unlabelled target data by a joint attribute-

identity transfer learning across domains. We make three

contributions: (I) We formulate a novel idea of heteroge-

neous multi-task joint deep learning of attribute and identity

discrimination for unsupervised person re-id. To our best

knowledge, this is the first attempt at joint deep learning of

auxiliary attribute and identity labels for solving the unsu-

pervised person re-id problem cross-domains. (II) We pro-

pose a Transferable Joint Attribute-Identity Deep Learning

(TJ-AIDL) to simultaneously learn global identity and local

attribute information from labelled source domain person

images through an Identity Inferred Attribute (IIA) space

for maximising the joint learning effectiveness between

identity and attribute. This IIA is designed specially to ad-

dress the notorious heteroscedasticity challenge from which

the common space multi-task joint learning often suffers.

Importantly, the IIA interacts concurrently with both the at-

tribute and identity learning tasks inter-dependently without

breaking the end-to-end model learning process. (III) We

introduce an attribute consistency scheme for performing

TJ-AIDL model unsupervised adaptation on the unlabelled

target data to further enhance its discriminative compatibil-

ity towards each target domain re-id task at hand. Exten-

sive evaluations demonstrate the superiority of the proposed

TJ-AIDL model over a wide range of state-of-the-art re-id

models on four challenging benchmarks VIPeR [14], PRID

[17], Market-1501 [62], and DukeMTMC-ReID [64].

2. Related work

Person Re-ID Most existing re-id models are based on su-

pervised learning for every camera pair on a separate set

of labelled training data [23, 58, 63, 55, 60, 52, 56, 8, 29,

50, 57, 48, 6, 30, 7, 31, 5]. They suffer from poor scala-

bility in realistic re-id deployments where no such a large

training set is available for each single camera pair. To

solve this scalability issue, unsupervised methods based on

hand-crafted features [13, 9, 21, 20, 34, 51, 61, 51] can be

chosen for deployment. However, they usually yield much

weaker performance than supervised models therefore prac-

tically not very useful. While a balance between scalability

and matching accuracy can be achieved by semi-supervised

learning, existing methods [35, 53] still demand a fairly

large set of pairwise labels which is again not scalable.

Recently, unsupervised re-id by cross-domain trans-

fer learning has been developed to exploit labelled data

from source datasets by extracting transferable identity-

discriminative information to an unlabelled target dataset

[40, 59, 47]. However, these methods have a few lim-

itations that restrict their generalisation: (1) Relying on

hand-crafted features without the deep learning capabil-

ity of automatically learning stronger representations from

training data [40]; (2) Using a pre-learned deep model on

labelled source data but lacking an effective domain adap-

tation mechanism [59]; (3) Independently exploiting iden-

tity and attribute label supervision in model learning there-

fore ignoring their interaction and compatibility [47]. Data

synthesis [2, 10] has also been proposed as a solution for

addressing limited data, although it suffers from undesir-

able person appearance distortion and restricted source se-

lection. The proposed TJ-AIDL method addresses these

limitations of existing methods in a unified deep joint learn-

ing model. Moreover, our method goes beyond the common

multi-task joint learning design by introducing a more trans-

ferable mechanism for discriminatively optimising both at-

tribute and identity learning in a shared end-to-end process.

Our experiments show that the proposed method signifi-

cantly outperforms existing models even by using less su-

pervision in the source domain.

Attribute for Re-ID Visual semantic attributes [54, 36]

have been exploited as a mid-level feature representation

for cross-view re-id [26, 24, 25, 47, 46, 40]. However, such

semantic coefficient representations are less powerfull for

identity discrimination than conventional feature vectors.

The reasons are: (1) Attribute coefficient representations are

usually of low dimensions (tens vs. thousands for typical

low-level feature representations) [62, 32, 14, 63]; (2) Con-

sistently predicting individually all the attributes is a diffi-

cult task when the labelled training data is sparse and person

images have low quality as mostly in person re-id datasets,

that is, inter-attribute discrimination can be weak on typi-

cal person re-id images. To overcome these problems, we

explore attributes in our TJ-AIDL model by introducing a

mechanism to extract identity discriminative attribute infor-

mation through co-learning both attribute and identity la-

belled data jointly. Moreover, we uniquely employ the at-

tribute space for unsupervised domain adaptation.

3. A Joint Attribute-Identity Space

Problem Definition For person re-id by attribute (semantic)

based unsupervised domain adaptation, we have a super-

vised source dataset (domain) {(Is
i , y

s
i ,a

s
i )}

Ns

i=1
consisting

of Ns person bounding box images Is, the corresponding

identity ys ∈ Y = {1, · · · , Ns
id} (i.e. a total Ns

id different

persons), and identity-level binary attribute as ∈ Rm×1

(i.e. a total m different attributes) labels. We also as-

sume a set {It
i}

Nt

i=1
of N t unlabelled target training data,

which can be used for model domain adaptation. The ob-

jective is to develop an unsupervised domain adaptation

approach to learning the optimal feature representation by
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Figure 1. An overview of the proposed Transferable Joint Attribute-Identity Deep Learning (TJ-AIDL).

transferring the supervised identity and attribute knowledge

of the source domain to person re-id in a target domain with

only unlabelled data of entirely a different pool of identity

classes. Note that: (1) Unlike identity label, attribute de-

tection is a multi-label recognition problem since the m at-

tribute categories co-exist in every single person image. (2)

These two types of label supervision lie at quite different

levels: Most attributes are localised to image regions, even

though the location information is not provided in the anno-

tation; While person identity labels are at the holistic image-

level. It is a non-trivial learning task since this is not only

a multi-label learning problem – joint learning of mutually

correlated attribute labels, but also a heterogeneous multi-

task joint learning problem – inter-dependently learning a

person re-id representation space by joint holistic identity

and local attribute supervision.

In this work, we present a novel Transferable Joint

Attribute-Identity Deep Learning (TJ-AIDL) approach

to establishing an identity-discriminative and attribute-

sensitive (i.e. dually-semantic) feature representation space

optimal for person re-id on the labelled target domain with-

out any identity and attribute labels provided. We avoid

simply combining re-id and attribute feature vectors in

deep model design to gain their complementary advantages,

which may suffer from the heteroscedasticity problem [11]

and finally results in sub-optimal results. Instead, we assign

them into two separate branches for simultaneously learning

individual discriminative features subject to the correspond-

ing label supervision concurrently. Importantly, we design

a progressive knowledge fusion mechanism by introducing

an Identity Inferred Attribute (IIA) regularisation space for

more smoothly transferring the global identity information

into the local attribute feature representation space. It is

also the proposed IIA space that provides an opportunity

that allows for adapting the learned model to the target do-

main where no identity and attribute labels are available.

As such, the proposed TJ-AIDL largely addresses the joint

learning challenges of heterogeneous identity and attribute

label information sources in a shared representational space

in a more challenging cross-domain context.

3.1. Transferable Joint Deep Learning

Model Overview We consider a multi-branch network ar-

chitecture for our heterogeneously supervised multi-task

learning. The rational of this multi-branch composition is

to maintain a sufficient independence of each supervision

learning tasks for avoiding their potentially negative mutual

influence due to their semantic discrepancy. An overview

of the proposed Transferable Joint Attribute-Identity Deep

Learning (TJ-AIDL) method is depicted in Fig. 1. The TJ-

AIDL contains two branches: (1) Identity Branch: which

aims to extract the re-id sensitive information from the

available identity class labels in the source domain (Fig-

ure 1(a)). (2) Attribute Branch: which aims to extract the

semantic knowledge from the attribute labels (also from

the source domain) (Figure 1(b)). To establish a channel

for knowledge fusion, we introduce the Identity Inferred

Attribute (IIA) space (Figure 1(c)) designed for transfer-

ring the re-id discriminative information from the Identity

Branch to the Attribute Branch where two-source infor-

mation is synergistically integrated in a smoother manner.

That is, once the TJ-AIDL is trained, the feature represen-

tations extracted from the Attribute Branch can be directly

exploited for re-id deployment.

For unsupervised person re-id by cross-domain knowl-

edge transfer and target data adaptation, we conduct the

model training of our proposed TJ-AIDL in two steps: (I)

Attribute-Identity Transferable Joint Learning: This is su-

pervised by the source labelled training data; (II) Unsuper-

vised Target Domain Adaptation: This is performed on the

target unlabelled training data. We describe more details for

each component of our TJ-AIDL in two training steps.

3.1.1 Attribute-Identity Transferable Joint Learning

Identity and Attribute Branches For building an efficient

yet strong deep re-id model, we choose the lightweight Mo-
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bileNet as the CNN architecture1 for both identity and at-

tribute branches. For training the identity branch (Fig. 1(a)),

we use the softmax Cross Entropy loss function defined as:

Lid = −
1

nbs

nbs
∑

i=1

log
(

pid(I
s
i , y

s
i )
)

(1)

where pid(I
s
i , y

s
i ) specifies the predicted probability on the

groundtruth class ysi of Is
i , and nbs denotes the batch size.

Given that the attribute branch (Fig. 1(b)) is a multi-

label classification learning task, we instead use the Sig-

moid Cross Entropy loss function to generate the training

signal by considering all m attribute classes:

Latt = −
1

nbs

nbs
∑

i=1

m
∑

j=1

(

ai,j log
(

patt(Ii, j)
)

+ (2)

(1− ai,j) log
(

1− patt(Ii, j)
)

)

where ai,j and patt(Ii, j) define the groundtruth label and

the predicted classification probability on the j-th attribute

class of the training image Ii, i.e. ai = [ai,1, · · · , ai,m] and

patt,i = [patt(Ii, 1), · · · , patt(Ii,m)].
By independently training the two branches using the

above designs, we only allows for optimising their respec-

tive features without exploiting their complementary effect

for maximising the compatibility. A common approach

is to build a multi-task joint learning network which di-

rectly subjects a shared feature representation to both iden-

tity loss (Eq. (1)) and attribute loss (Eq. (2)) concurrently

in model training. Instead, we present an alternative pro-

gressive scheme for more effective multi-source knowledge

fusion as described below (see evaluations in Sec. 4.2).

Identity Inferred Attribute Space We introduce an inter-

mediate Identity Inferred Attribute (IIA) Space for achiev-

ing the knowledge fusion learning on attribute and identity

labels in a softer manner (Fig. 1(c)). The IIA space is

jointly learned with the two branches while being exploited

to perform information transfer and fusion from the identity

branch to the attribute branch simultaneously. This scheme

allows for both consistent and cumulative knowledge fusion

in the whole training course.

More specifically, we build the IIA space in the encoder-

decoder (auto-encoder) framework due to that: (1) It has a

strong capability of capturing the most important informa-

tion of a given target task (represented by the input data)

via a concise feature vector representation; (2) More impor-

tantly, such a concise feature representation facilitates the

inter-task information transfer whilst still preserving suffi-

cient updating freedom space to every individual learning

task [4, 43]. We call this sub-model IIA encoder-decoder.

1 This selection is independent of our model design and others can be

readily applied, e.g. ResNet [15], Inception [49] and VggNet [45].

In our context, we want to extract and compress essential

identity information into the IIA space for facilitating fu-

sion. We therefore exploit the identity features (Fig. 1(a))

as the input of IIA encoder and also the groundtruth of IIA

decoder (i.e. reconstruction unsupervised learning). Once

the input is given, this model itself can be learned based on

the reconstruction loss (Mean Square Error (MSE)):

Lrec = ‖xid − fIIA(xid)‖
2 (3)

where xid represents the identity feature of a training image

and fIIA() the mapping function of IIA encoder-decoder. By

this unsupervised learning manner, we are able to obtain a

latent feature embedding eIIA with important identity infor-

mation encoded. To transfer the identity information across

branches, we need a corresponding low dimensional match-

able space in the attribute counterpart, which however is not

available.

To address the above problem, we propose to align the

IIA embedding eIIA with the prediction distribution over all

m attribute classes, in spirit of knowledge distillation [16].

As such, we naturally set m as the dimension of eIIA for eas-

ing alignment and cross-branch knowledge transfer without

the need for an additional transformation.

More formally, we conduct the identity knowledge trans-

fer via imposing an MSE based identity transfer loss:

LID-transfer = ‖eIIA − p̃att‖
2 (4)

where p̃att is logits from the attribute branch. Considering

that the eIIA is derived in an unsupervised manner which

may be over further way from the attribute prediction coun-

terpart and hence giving a harder alignment task, we add

similarly a sigmoid Cross Entropy loss to the learning of

eIIA by exploiting it as a pseudo attribute prediction, as

Lattr, IIA = −
1

nbs

nbs
∑

i=1

m
∑

j=1

(

ai,j log
(

pIIA(Ii, j)
)

+ (5)

(1− ai,j) log
(

1− pIIA(Ii, j)
)

)

where pIIA(Ii, j) is the probability predicted based on eIIA

by the sigmoid function. Finally, we formulate the overall

IIA loss function by incorporating the above components by

weighted summation as:

LIIA = Lattr, IIA + λ1Lrec + λ2LID-transfer (6)

where λ1 and λ2 are scale normalisation parameters to en-

sure all three loss quantities are of a similar scale in value.

Impact of IIA on Identity and Attribute Branches The in-

troduction of IIA imposes different influence on the two

branches in model training. Since IIA is established on the

identity features, no change is imposed into the learning of
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this branch. For the attribute branch, however, an additional

learning constraint is created for identity knowledge trans-

fer. We therefore reformulate its supervised learning loss

function by incorporating Eq. (4) as:

Latt-total = Latt + λ2LID-transfer (7)

Remarks The IIA component aims at creating an interac-

tive learning mechanism between the identity and attribute

branches in a more transferable way. This significantly dif-

fers from the straightforward joint learning approach which

suffers from the underlying multi-source information in-

compatible problem. We summarise the main information

flow in model joint training: (1) The identity branch learns

to extract identity discriminative information; (2) The IIA

component then transfers the identity information to the at-

tribute branch; (3) The attribute branch learns to extract at-

tribute discriminative knowledge whilst simultaneously in-

corporating/fusing identity sensitive information. However,

the TJ-AIDL model learned on the labelled source data is

still not optimal for re-id in a typically unlabelled target do-

main due to the inevitable presence of domain shift in real-

world deployment scenarios. This leads to the necessity of

model unsupervised domain adaptation, as detailed below.

3.1.2 Unsupervised Target Domain Adaptation

We want to adapt a learned TJ-AIDL model to fit the un-

labelled target domain data. To that end, we exploit the

attribute consistency principle by treating the prediction of

attribute branch and the embedding of IIA component as

different attribute perspectives from different domains. This

idea is based on the observation that, a well fitted TJ-AIDL

model is supposed to have small discrepancy between the

two different attribute perspectives, for example, the one

trained on the source domain (Fig. 2(a)). In other words,

their consistency degree suggests how well the model fits

a given domain. This also partially shares the spirit of the

cyclic consistency mechanism [44].

Specifically, our objective is to adapt the attribute branch

since it is used in re-id deployment. Hence, we can ignore

the updating of the identity branch. We design the following

adaptation algorithm: (1) We deploy the TJ-AIDL model

learned on the source domain on unlabelled target person

images to obtain the attribute prediction patt,t from the at-

tribute branch. (2) We then utilise the soft label patt,t as the

pseudo groundtruth to update both the attribute branch and

IIA component for reducing attribute discrepancy between

domains (Fig. 2(b)). Intuitively, this soft attribute label is

needed since we need to prevent the model drifting overly

by maintaining the most attribute discriminative power ob-

tained from the source domain. (3) We adapt the model on

the target training data until convergence.

ID Branch

Attribute Branch
Attribute Label

Attribute Label Source
ID Label

�"#

�$%%&"#

�($%%
�($%%

����

����

(a) Source data supervised learning of TJ-AIDL by attribute consistency

ID Branch

Attribute Branch
Soft Label

Soft Label Target

�"#$$

�&'

�#$$(&'

�"#$$

����

����

(b) Taget domain adaptation of TJ-AIDL by attribute consistency

Figure 2. An illustration of the attribute consistency maximisation

idea for unsupervised target domain adaptation. Given a TJ-AIDL

model trained on the source domain, it has more attribute consis-

tency (a) on the source domain, (b) but less on the unseen target

domain. See more details in the main text.

3.2. Model Optimisation and Deployment

Optimisation Our TJ-AIDL model can be trained using the

standard Stochastic Gradient Descent algorithm in end-to-

end manner. We summarise the training process in Alg. 1.

Deployment Given a TJ-AIDL model trained on a labelled

source domain and adapted on the unlabelled target domain,

we obtain a 1,024-D deep feature representation from the

attribute branch (Fig. 1(b)). This feature vector is not only

attribute semantic but also identity discriminative. Hence,

we deploy this 1,024-D deep feature for person re-id de-

ployment by the L2 distance in the target domain.

4. Experiments

Datasets and Evaluation Protocol We choose four widely

adopted person re-id benchmarks for experimental evalua-

tions (Fig. 3). We adopt the standard supervised re-id data

split settings and only use the test data for model evaluation

whilst the training part is ignored.

(1) The Market-1501 dataset [62] contains 32,668 images

of 1,501 pedestrians, each of which was captured by at most

six cameras at a university campus. All of the images were

cropped by a pedestrian detector and therefore presenting

more challenges to re-id models due to more background

clutters and the misalignment problem. Evaluation Proto-

col: We used the standard training/test split (750/751) and

evaluated on single-query evaluation settings [62].

(2) The DukeMTMC-ReID dataset [64] contains 2 ∼ 426
images per person captured by 8 non-overlapping camera

views. This dataset was constructed from the multi-camera
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Algorithm 1 Learning the TJ-AIDL model.

Input: Ns labelled source {(Is

i , y
s

i ,a
s

i )}
N

s

i=1 and N t unlabelled

target {It

i }
N

t

i=1 training data;

Output: TJ-AIDL re-id model;

Step I: Transferable Joint Learning (Sec. 3.1.1)

for t = 1 to max-iteration do

Sampling a batch of labelled source data;

Identity branch evaluation (samples feed-forward);

Attribute branch evaluation;

Updating the identity branch (Eq. (1));

Updating the IIA encoder-decoder (Eq. (6));

Updating the attribute branch (Eq. (7));

end for

Step II: Unsupervised Target Domain Adaptation (Sec. 3.1.2)

for t = 1 to max-iteration do

Sampling a batch of unlabelled target training data;

Attribute branch evaluation to obtain the soft labels;

Updating the IIA encoder-decoder (Eq. (6));

Updating the attribute branch (Eq. (7)).

end for

tracking dataset DukeMTMC by random selection of manu-

ally labelled tracklet bounding boxes. Evaluation Protocol:

We followed [64] by splitting all 1,404 person identities into

two halves 702/702 for model training and test, respectively

and testing re-id tasks in the single-query setting.

(3) The VIPeR dataset [14] has 632 identities each with two

images captured from two camera views in different scenar-

ios of illumination, postures and viewpoints. This dataset

is also featured with low resolution therefore giving rise to

an extremely challenging re-id task. Evaluation Protocol:

We randomly split the whole population into two halves as

training/test sets. We repeat 10 times of random split and

report the average result.

(4) The PRID dataset [17] consists of person images from

two camera views: View A captures 385 people, whilst

View B contains 749 people. Only 200 people appear in

both views. Evaluation Protocol: We use the single shot

version in our experiments as [60]. In each data split, 100

people with one image from each view are randomly chosen

from the 200 present in both camera views as the training

set, while the remaining 100 of View A are used as the probe

set, and the remaining 649 of View B are used as gallery.

Experiments are repeated over 10 random splits.

For performance metric, we use the cumulative matching

characteristic (CMC) and mean Average Precision (mAP).

Attribute Annotation In our evaluations, we use either

Market-1501 [62] or DukeMTMC-ReID) dataset [33] as the

source domain, since they provide both identity and at-

tribute labels (Fig. 3). Specifically, there are 27/23 classes

of attributes labelled for Market-1501 / DukeMTMC-ReID

[33]. To ensure the unsupervised re-id property, we do not

test the Market-1501 when it is used as the source domain.

Female 
Back pack 
Down white 
Up black

Female
Young
Long hair
Bag
Short sleeve
Up black
Down gray

Male
Short hair
Short sleeve
Back pack
Young
Up red
Down blue

Male 
Hat 
Handbag 
Down blue 
Up black

(b) DukeMCMT-ReID

(a) Market-1501 (c) VIPER

(d) PRID
Figure 3. Example of person images and attribute labels. Each pair

represents two images of the same person.

Table 1. Unsupervised re-id performance evaluation. Metric:

Rank-1 and mAP (%). The 1st/2nd best results are in red and blue.

TJ-AIDLDuke / TJ-AIDLMarket: Our TJ-AIDL using DukeMCMT-

ReID and Market-1501 as the labelled source, respectively.
Dataset VIPeR PRID Market-1501 DukeMCMT

Metric (%) R1 R1 R1 mAP R1 mAP

SDALF[13] 19.9 16.3 - - - -

DLLR [21] 29.6 21.1 - - - -

CPS [9] 22.0 - - - - -

GL [20] 33.5 25.0 - - - -

GTS [51] 25.2 - - - - -

SDC[61] 25.8 - - - - -

ISR [34] 27.0 17.0 40.3 14.3 - -

Dic[22] 29.9 - 50.2 22.7 - -

RKSL[53] 25.8 - 34.0 11.0 - -

SAE[27] 20.7 - 42.4 16.2 - -

AML[42] 23.1 - 44.7 18.4 - -

UsNCA [42] 24.3 - 45.2 18.9 - -

CAMEL [59] 30.9 - 54.5 26.3 - -

PUL [12] - - 44.7 20.1 30.4 16.4

kLFDA N [58] 15.9 9.1 - - - -

SADA+kLFDA [58] 15.2 8.7 - - - -

AdaRSVM [37] 10.9 4.9 - - - -

UDML [40] 31.5 24.2 - - - -

SSDAL [47] 37.9 20.1 39.4 19.6 - -

TJ-AIDLDuke 35.1 34.8 58.2 26.5 N/A N/A

TJ-AIDLMarket 38.5 26.8 N/A N/A 44.3 23.0

This similarly applies to DukeMTMC-ReID.

Implementation Details We realised the TJ-AIDL model

in the Tensorflow framework [1]. The IIA encoder is de-

signed as a 3-FC-layers network with their output dimen-

sions as 512/128/m (m is the number of attribute labels).

A network of a mirror structure is used in the IIA decoder.

We fixed both λ1 and λ2 to 10 (Eq. (6)) by scale align-

ment. We pre-trained the MobileNet on ImageNet for both

identity and attribute branches. We used the Adam opti-

miser [19] with a learning rate of 0.002 and the default mo-

mentum terms β1 = 0.5, β2 = 0.999. We set the mini-

batch size to 8. We started with training the identity branch

by 100,000 iterations on the source identity labels and then

the whole model by 20,000 iterations for both transferable

joint learning on the labelled source data and unsupervised

domain adaptation on the unlabelled target data.

2280



4.1. Comparisons to the State­Of­The­Arts

We compare 19 models in three categories of exist-

ing unsupervised re-id methods: (1) Hand-crafted feature

based methods without transfer learning: SDALF[13] and

CPS [9], those features are designed to be view invari-

ant. Dictionary Learning based methods DLLR [21], graph-

learning-based model GL [20], sparse representation learn-

ing methods ISR [34], salience-learning-based GTS [51]

and SDC[61]. (2) Source identity knowledge transfer learn-

ing based methods: Dic [22], RKSL [53], SAE [27], AML

[42], UsNCA [42], CAMEL [59]. (3) Source identity

and attribute knowledge based transfer methods: kLFDA N

[58] SADA+kLFDA [58] AdaRSVM [37] UDML [40].

Table 1 shows that: (1) Our method outperforms clearly

all existing state-of-the-art models, improving the Rank-

1 by 0.6% (38.5-37.9), 9.8% (34.8-25.0), 3.7% (58.2-

54.5), 13.9% (44.3-30.4) over the best alternative method

on VIPeR/PRID/Market-1501/DukeMCMT-ReID, respec-

tively. This suggests the overall performance advantages

of the proposed TJ-AIDL in the capability of multi-source

(attribute and identity) information extraction and fusion for

cross-domain unsupervised re-id matching. (2) When com-

pared to the existing methods of 1st category (non-learning

based) the performance margins are even much larger, e.g.

the Rank-1 boost is 8.9% (38.5-29.6), 9.8% (34.8-25.0),

17.9% (58.2-40.3) on VIPeR/PRID/Market-1501, respec-

tively. This indicates the importance of learning from la-

belled source supervision in cross-domain re-id scenarios,

since hand-crafted features are not sufficiently generalisable

across different domains with varying camera view condi-

tions. (3) When comparing the methods between 2nd (iden-

tity transfer) and 3rd (identity and attribute joint transfer)

category, it is interestingly found that the latter is not neces-

sarily superior over the former. This means that using more

supervision in cross-domain transfer learning is non-trivial

particularly when the label property is heterogeneous such

as identity and attribute. This also indirectly suggest the

model design advantages of our TJ-AIDL in exploiting the

diverse knowledge in different types of label data for the

more challenging cross-domain re-id tasks in the unlabelled

target scenario typical in real-world deployments.

Finally, it is worth noting that the performance advan-

tages by our TJ-AIDL are achieved using much less super-

vision data of lower diversity from only one source domain

(16,522 images of 702 identities/classes on DukeMCMT-

ReID, or 12,936 images of 751 identities on Market-1501)

than strong existing competitors. For example, the meth-

ods of 2nd category utilise 7 different person re-id datasets

with high domain varieties (CUHK03[29], CUHK01[28],

PRID, VIPeR, 3DPeS[3], i-LIDS[41], Shinpuhkan[18]) in-

cluding a total of 44,685 images and 3,791 identities; The

UDML [40] exploits three different source domains includ-

ing 46,966 images of 3,246 identities for test on VIPeR (tar-

get), and 47,096 images of 3,493 identities for test on PRID

(target). The SSDAL [47] benefits from 10 diverse datasets

consisting in 19,000 images of 8,705 person identities and

another 20,000 images of 1,221 person tracklets.

4.2. Comparisons to Alternative Fusion Methods

We compare the TJ-AIDL with two multi-source fusion

methods: (a) Independent Supervision: Independently train a

deep CNN model for either attribute or identity label in the

source domain and use the concatenated feature vectors of

the two models for re-id matching in the target domain. (b)

Joint Supervision: A seminal multi-task joint learning CNN

framework subjecting the identity and attribute supervision

to a shared feature representation in the end-to-end model

training. For re-id deployment on the target domain, we use

the multi-supervision shared feature representation.

Table 2 shows that: (1) The TJ-AIDL outperforms both

alternative fusion methods. This suggests a clear advan-

tage of our method in exploiting and fusing multiple super-

vision for cross-domain re-id in an unsupervised manner.

(2) Our method achieves more performance gain over the

competitors on the transfer from Market-1501 (source) to

DukeMTMC-ReID (target) than the opposite transfer. This

is expected and reasonable because relative to Market-1501,

person images from DukeMTMC-ReID have more changes

in image resolution and background clutter due to wider

camera views and more complex scene layout, which means

the source information itself from Market-1501 is insuffi-

cient to generalise the target DukeMTMC-ReID setting and

therefore leading to a higher need for domain adaptation.

Our model strongly and naturally meets this deployment

requirement. For the opposite transfer from DukeMTMC-

ReID to Market-1501, our model gives less performance

gain since there is a lower need for domain adaptation.

4.3. Further Analysis and Discussions

Effect of Joint Attribute and Identity Features We eval-

uated the effect of joint attribute and identity features by

comparing their individual re-id performances against that

of the joint feature. We obtain their individual model by

training a MobileCNN using either identity or attribute label

only. Table 3 shows feature representation learned by only

one supervision is significantly inferior that that by our TJ-

AIDL. For instance, the TJ-AIDL feature outperforms ID

Only by 13.7%(44.3-30.6) in Rank-1 and 8.4% (23.0-14.6)

in mAP on DukeMCMT-ReID (target); by 6.6% (58.2-51.6)

in Rank-1 and 4.9%(26.5-21.6) in mAP on Market-1501

(target). These validate the complementary effect of jointly

learning attribute and identity information and importantly

strong capability of our model in maximising this latent in-

formation in a more transferable context. We also plot three

feature distributions of 10 randomly selected test identities

of DukeMTMC-ReID (transferred from Market-1501). Fig-
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Table 2. Comparing different multi-source fusion methods.

Source → Target Market-1501 → DukeMCMT-ReID DukeMCMT-ReID → Market-1501

Metric (%) Rank1 Rank5 Rank10 Rank20 mAP Rank1 Rank5 Rank10 Rank20 mAP

Independent Supervision 33.8 49.5 56.0 63.8 16.9 54.9 72.9 79.3 85.2 24.5

Joint Supervision 37.9 52.1 58.6 65.3 20.6 53.4 71.2 78.1 83.3 21.9

TJ-AIDL 44.3 59.6 65.0 70.0 23.0 58.2 74.8 81.1 86.5 26.5

Table 3. Complementary of identity-discriminative and attribute-

sensitive features learned by the proposed TJ-AIDL.

Source → Target Market-1501 → DukeMCMT-ReID

Metric (%) Rank1 Rank5 Rank10 Rank20 mAP

Attribute Only 24.3 38.3 45.7 53.0 10.0

ID Only 30.6 44.9 50.5 59.3 14.6

Attribute + ID (Full) 44.3 59.6 65.0 70.0 23.0

Source → Target DukeMCMT-ReID → Market-1501

Attribute Only 38.0 59.2 67.6 75.7 13.6

ID Only 51.6 69.8 76.6 81.6 21.6

Attribute + ID (Full) 58.2 74.8 81.1 86.5 26.5

Identities Only SpaceAttributes Only Space TJ-AIDL (Ours)
R1: 24.3 R1: 30.6 R1: 44.3 

Figure 4. Feature distributions of 10 random test identities in three

transferred feature spaces (Market-1501 → DukeMCMT-ReID)

visualised by t-SNE [38]. Colour coded identity classes.

ure 4 shows that: (1) Neither transferring the knowledge

of attributes or identities alone can form per-identity com-

pact clusters; (2) By our TJ-AID that transfers attributes and

identities jointly, the feature distributions of 10 test identi-

ties are much more separated.

Table 4. Effect of the target domain adaptation in TJ-AIDL.

Source → Target Market-1501 → DukeMCMT-ReID

Metric (%) Rank1 Rank5 Rank10 Rank20 mAP

w/o Adaptation 39.6 55.5 62.2 67.5 22.0

w Adaptation 44.3 59.6 65.0 70.0 23.0

Source → Target DukeMCMT-ReID → Market-1501

w/o Adaptation 57.1 74.4 80.4 85.7 26.2

w Adaptation 58.2 74.8 81.1 86.5 26.5

Effect of Target Domain Adaptation We evaluated the

effect of the attribute consistency driven domain adapta-

tion on unlabelled target training data. Table 4 shows

that this adaptation clearly improves the re-id performance

for the transfer of DukeMCMT-ReID → Market-1501

(1.1% Rank-1 boost) and more significantly for the case of

Market-1501 → DukeMCMT-ReID (4.7% Rank-1 boost).

This shares a similar observation and underlying reason as

in Table 2, validating the benefit of our method in vary-

ing cross-domain model adaptation in improving the model

compatibility when deployed to a new target scenario.

5. Conclusion

We presented a novel Transferable Joint Attribute-

Identity Deep Learning (TJ-AIDL) for more discriminative

joint learning of the identity and attribute supervision from

an auxiliary domain in order to particularly address the scal-

able unsupervised person re-identification problem in the

context of heterogeneous multi-task joint learning and do-

main transfer learning. In contrast to most existing re-id

methods that either ignore the scalability issue in re-id or

exploit a straightforward yet sub-optimal multi-task joint

learning of multi-supervision, the proposed model is capa-

ble of transferring and integrating multiple heterogeneous

supervision and maximising their latent compatibility for

optimal person re-id in a progressive and more transferable

means. This is achieved by introducing an Identity Inferred

Attribute space for interactive attribute and identity discrim-

inative learning in a two-branches CNN architecture. More-

over, we introduce an attribute consistency maximisation

mechanism to further discriminatively adapt a learned TJ-

AIDL model to fit any given target re-id deployment with-

out the need for additional data labelling and hence very

scalable to real-world applications. Extensive evaluations

were conducted on four re-id benchmarks to validate the ad-

vantages of the proposed TJ-AIDL model over a wide range

of state-of-the-art methods on different re-id task scenarios

with various challenges. We also compared the TJ-AIDL

model with popular multi-supervision fusion methods and

provided detailed component analysis with insights into the

performance gain of our model design.

Acknowledgements

This work was partially supported by the China Scholar-

ship Council, Vision Semantics Ltd, Royal Society New-

ton Advanced Fellowship Programme (NA150459), and In-

novateUK Industrial Challenge Project on Developing and

Commercialising Intelligent Video Analytics Solutions for

Public Safety.

2282



References

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,

M. Devin, S. Ghemawat, G. Irving, M. Isard, et al. Tensor-

flow: A system for large-scale machine learning. 6

[2] L. An, Z. Qin, X. Chen, and S. Yang. Multi-level common

space learning for person re-identification. IEEE Transac-

tions on Circuits and Systems for Video Technology, 2017.

2

[3] D. Baltieri, R. Vezzani, and R. Cucchiara. 3dpes: 3d people

dataset for surveillance and forensics. In Proceedings of the

2011 joint ACM workshop on Human gesture and behavior

understanding, pages 59–64. ACM, 2011. 7

[4] H. Bourlard and Y. Kamp. Auto-association by multilayer

perceptrons and singular value decomposition. Biological

Cybernetics, 1988. 4

[5] X. Chang, T. M. Hospedales, and T. Xiang. Multi-level fac-

torisation net for person re-identification. In CVPR, 2018. 1,

2

[6] W. Chen, X. Chen, J. Zhang, and K. Huang. A multi-task

deep network for person re-identification. In AAAI, 2017. 1,

2

[7] Y. Chen, X. Zhu, and S. Gong. Person re-identification by

deep learning multi-scale representations. In ICCV Work-

shop, 2017. 2

[8] Y.-C. Chen, X. Zhu, W.-S. Zheng, and J.-H. Lai. Person re-

identification by camera correlation aware feature augmen-

tation. IEEE TPAMI, 2017. 1, 2

[9] D. S. Cheng, M. Cristani, M. Stoppa, L. Bazzani, and

V. Murino. Custom pictorial structures for re-identification.

In BMVC, 2011. 1, 2, 6, 7

[10] W. Deng, L. Zheng, G. Kang, Y. Yang, Q. Ye, and

J. Jiao. Image-image domain adaptation with preserved

self-similarity and domain-dissimilarity for person re-

identification. In CVPR, 2018. 2

[11] R. Duin and M. Loog. Linear dimensionality reduction via a

heteroscedastic extension of lda: the chernoff criterion. IEEE

TPAMI, 2004. 2, 3

[12] H. Fan, L. Zheng, and Y. Yang. Unsupervised person re-

identification: Clustering and fine-tuning. arXiv, 2017. 6

[13] M. Farenzena, L. Bazzani, A. Perina, V. Murino, and

M. Cristani. Person re-identification by symmetry-driven ac-

cumulation of local features. In CVPR, 2010. 1, 2, 6, 7

[14] D. Gray and H. Tao. Viewpoint invariant pedestrian recogni-

tion with an ensemble of localized features. In ECCV, 2008.

2, 6

[15] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, 2016. 4

[16] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge

in a neural network. arXiv, 2015. 4

[17] M. Hirzer, C. Beleznai, P. M. Roth, and H. Bischof. Person

re-identification by descriptive and discriminative classifica-

tion. In SCIA, 2011. 2, 6

[18] Y. Kawanishi, Y. Wu, M. Mukunoki, and M. Minoh. Shin-

puhkan2014: A multi-camera pedestrian dataset for track-

ing people across multiple cameras. In 20th Korea-Japan

Joint Workshop on Frontiers of Computer Vision, volume 5,

page 6, 2014. 7

[19] D. Kingma and J. Ba. Adam: A method for stochastic opti-

mization. arXiv, 2014. 6

[20] E. Kodirov, T. Xiang, Z. Fu, and S. Gong. Person re-

identification by unsupervised ℓ1 graph learning. In ECCV,

2016. 1, 2, 6, 7

[21] E. Kodirov, T. Xiang, and S. Gong. Dictionary learning with

iterative laplacian regularisation for unsupervised person re-

identification. In BMVC, 2015. 1, 2, 6, 7

[22] E. Kodirov, T. Xiang, and S. Gong. Dictionary learning with

iterative laplacian regularisation for unsupervised person re-

identification. In BMVC, 2015. 6, 7

[23] M. Koestinger, M. Hirzer, P. Wohlhart, P. M. Roth, and

H. Bischof. Large scale metric learning from equivalence

constraints. In CVPR, 2012. 1, 2

[24] R. Layne, T. M. Hospedales, and S. Gong. Attributes-based

re-identification. In Person Re-Identification, pages 93–117.

2014. 2

[25] R. Layne, T. M. Hospedales, and S. Gong. Re-id: Hunting

attributes in the wild. In BMVC, 2014. 2

[26] R. Layne, T. M. Hospedales, S. Gong, and Q. Mary. Person

re-identification by attributes. In BMVC, volume 2, page 8,

2012. 2

[27] H. Lee, C. Ekanadham, and A. Y. Ng. Sparse deep belief net

model for visual area v2. In NIPS, 2008. 6, 7

[28] W. Li, R. Zhao, and X. Wang. Human reidentification with

transferred metric learning. In ACCV, 2012. 7

[29] W. Li, R. Zhao, T. Xiao, and X. Wang. Deepreid: Deep filter

pairing neural network for person re-identification. In CVPR,

2014. 1, 2, 7

[30] W. Li, X. Zhu, and S. Gong. Person re-identification by deep

joint learning of multi-loss classification. IJCAI, 2017. 1, 2

[31] W. Li, X. Zhu, and S. Gong. Harmonious attention network

for person re-identification. In CVPR, 2018. 1, 2

[32] S. Liao, Y. Hu, X. Zhu, and S. Z. Li. Person re-identification

by local maximal occurrence representation and metric

learning. In CVPR, 2015. 2

[33] Y. Lin, L. Zheng, and W. Y. a. Y. Y. Zheng, Zhedong and.

Improving person re-identification by attribute and identity

learning. arXiv, 2017. 6

[34] G. Lisanti, I. Masi, A. D. Bagdanov, and A. Del Bimbo. Per-

son re-identification by iterative re-weighted sparse ranking.

IEEE TPAMI, 2015. 1, 2, 6, 7

[35] X. Liu, M. Song, D. Tao, X. Zhou, C. Chen, and J. Bu.

Semi-supervised coupled dictionary learning for person re-

identification. In CVPR, 2014. 2

[36] X. Liu, H. Zhao, M. Tian, L. Sheng, J. Shao, S. Yi, J. Yan,

and X. Wang. Hydraplus-net: Attentive deep features for

pedestrian analysis. In ICCV, 2017. 2

[37] A. J. Ma, J. Li, P. C. Yuen, and P. Li. Cross-domain person

reidentification using domain adaptation ranking svms. IEEE

TIP, 2015. 6, 7

[38] L. v. d. Maaten and G. Hinton. Visualizing data using t-sne.

JMLR, 2008. 8

[39] S. J. Pan and Q. Yang. A survey on transfer learning. IEEE

TKDE, 2010. 1

[40] P. Peng, T. Xiang, Y. Wang, M. Pontil, S. Gong, T. Huang,

and Y. Tian. Unsupervised cross-dataset transfer learning for

person re-identification. In CVPR, 2016. 1, 2, 6, 7

2283



[41] B. J. Prosser, W.-S. Zheng, S. Gong, T. Xiang, and Q. Mary.

Person re-identification by support vector ranking. In BMVC,

volume 2, page 6, 2010. 7

[42] C. Qin, S. Song, G. Huang, and L. Zhu. Unsupervised neigh-

borhood component analysis for clustering. Neurocomput-

ing, 2015. 6, 7

[43] A. Rannen, R. Aljundi, and M. B. B. T. Tuytelaars. Encoder

based lifelong learning. In CVPR, 2017. 4

[44] O. Sener, H. O. Song, A. Saxena, and S. Savarese. Learning

transferrable representations for unsupervised domain adap-

tation. In NIPS, 2016. 5

[45] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In ICLR, 2015.

4

[46] C. Su, F. Yang, S. Zhang, Q. Tian, L. S. Davis, and W. Gao.

Multi-task learning with low rank attribute embedding for

person re-identification. In ICCV, 2015. 2

[47] C. Su, S. Zhang, J. Xing, W. Gao, and Q. Tian. Deep

attributes driven multi-camera person re-identification. In

ECCV, 2016. 1, 2, 6, 7

[48] A. Subramaniam, M. Chatterjee, and A. Mittal. Deep neural

networks with inexact matching for person re-identification.

In NIPS, 2016. 1, 2

[49] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.

Rethinking the inception architecture for computer vision. In

CVPR, 2016. 4

[50] F. Wang, W. Zuo, L. Lin, D. Zhang, and L. Zhang. Joint

learning of single-image and cross-image representations for

person re-identification. In CVPR, 2016. 1, 2

[51] H. Wang, S. Gong, and T. Xiang. Unsupervised learning

of generative topic saliency for person re-identification. In

BMVC, 2014. 1, 2, 6, 7

[52] H. Wang, S. Gong, X. Zhu, and T. Xiang. Human-in-the-loop

person re-identification. In ECCV, 2016. 1, 2

[53] H. Wang, X. Zhu, T. Xiang, and S. Gong. Towards unsuper-

vised open-set person re-identification. In ICIP, 2016. 2, 6,

7

[54] J. Wang, X. Zhu, S. Gong, and W. Li. Attribute recogni-

tion by joint recurrent learning of context and correlation. In

ICCV, 2017. 2

[55] T. Wang, S. Gong, X. Zhu, and S. Wang. Person re-

identification by video ranking. In ECCV, 2014. 1, 2

[56] T. Wang, S. Gong, X. Zhu, and S. Wang. Person re-

identification by discriminative selection in video ranking.

IEEE TPAMI, 2016. 1, 2

[57] T. Xiao, H. Li, W. Ouyang, and X. Wang. Learning deep fea-

ture representations with domain guided dropout for person

re-identification. In CVPR, 2016. 1, 2

[58] F. Xiong, M. Gou, O. Camps, and M. Sznaier. Person re-

identification using kernel-based metric learning methods. In

ECCV, 2014. 1, 2, 6, 7

[59] H.-X. Yu, A. Wu, and W.-S. Zheng. Cross-view asymmetric

metric learning for unsupervised person re-identification. In

ICCV, 2017. 1, 2, 6, 7

[60] L. Zhang, T. Xiang, and S. Gong. Learning a discriminative

null space for person re-identification. In CVPR, 2016. 1, 2,

6

[61] R. Zhao, W. Oyang, and X. Wang. Person re-identification

by saliency learning. IEEE TPAMI, 2017. 1, 2, 6, 7

[62] L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, and Q. Tian.

Scalable person re-identification: A benchmark. In ICCV,

2015. 2, 5, 6

[63] W.-S. Zheng, S. Gong, and T. Xiang. Reidentification by

relative distance comparison. IEEE TPAMI, 2013. 1, 2

[64] Z. Zheng, L. Zheng, and Y. Yang. Unlabeled samples gener-

ated by gan improve the person re-identification baseline in

vitro. In ICCV, 2017. 2, 5, 6

2284


